Saturday, 2 May 2015

The Parabola Formulas

The standard formula of a parabola
y2=2px
Parametric equations of the parabola:
xy=2pt2=2pt
Tangent line in a point D(x0,y0) of a parabola y2=2px is :
y0y=p(x+x0)
Tangent line with a given slope m:
y=mx+p2m
Tangent lines from a given point
Take a fixed point P(x0,y0). The equations of the tangent lines are:
yy0yy0m1m2=m1(xx0)=m2(xx0)=y0+y202px02x0=y0y202px02x0

The Ellipse Formulas

The set of all points in the plane, the sum of whose distances from two fixed points, called the foci, is a constant.
The standard formula of a ellipse:
x2a2+y2b2=1
Parametric equations of the ellipse:
xy=acost=bsint
Tangent line in a point D(x0,y0) of a ellipse:
x0xa2+y0yb2=1
Eccentricity of the ellipse:
e=a2b2a
Foci of the ellipse:
if abF1(a2b2,0)  F2(a2b2,0)if a<bF1(0,b2a2)  F2(0,b2a2)
Area of the ellipse:
A=Ï€ab

The Hyperbola Formulas

The set of all points in the plane, the difference of whose distances from two fixed points, called the foci, remains constant.
The standard formula of a hyperbola:
x2a2y2b2=1
Parametric equations of the Hyperbola:
xy=asint=bsintcost
Tangent line in a point D(x0,y0) of a Hyperbola:
x0xa2y0yb2=1
Foci:
if abF1(a2+b2,0)  F2(a2+b2,0)if a<bF1(0,a2+b2)  F2(0,a2+b2)
Asymptotes:
if aby=bax and y=baxif a<by=abx and y=abx

No comments:

Post a Comment