Saturday, 2 May 2015

Integrals involving ax+b

(ax+b)ndx=(ax+b)n+1a(n+1),(for n1)
1ax+bdx=1aln|ax+b|
x(ax+b)ndx=a(n+1)xba2(n+1)(n+2)(ax+b)n+1,(for n1,n2)
xax+bdx=x2ba2ln|ax+b|
x(ax+b)2dx=ba2(ax+b)1a2ln|ax+b|
x2ax+bdx=1a3((ax+b)222b(ax+b)+b2ln|ax+b|)
x2(ax+b)2dx=1a3(ax+b2bln|ax+b|b2ax+b)
x2(ax+b)3dx=1a3(ln|ax+b|+2bax+bb22(ax+b)2)
x2(ax+b)ndx=1a3((ax+b)3nn3+2b(a+b)2nn2b2(ax+b)1nn1)
1x(ax+b)dx=1blnax+bx
1x2(ax+b)2dx=1bx+ab2lnax+bx
1x2(ax+b)2dx=a(1b2(ax+b)+1ab2x2b3lnax+bx)

Integrals involving ax2+bx+c

1x2+a2dx=1aarctanxa
1x2a2dx=12alnxax+a
1ax2+bx+cdx=24acb2arctan2ax+b4acb2for 4acb2>02b24acln2ax+bb24ac2ax+b+b24acfor 4acb2<022ax+bfor 4acb2=0
xax2+bx+cdx=12alnax2+bx+cb2adxax2+bx+c
1(ax2+bx+c)ndx=2ax+b(n1)(4acb2)(ax+bx+c)n1+2(2n3)a(n1)(4acb2)dx(ax2+bx+c)n1
1x(ax2+bx+c)dx=12clnx2ax2+bx+cb2c1ax2+bx+cdx

No comments:

Post a Comment