Saturday, 2 May 2015

Integrals of Trigonometric Functions

sinx dx=cosx
cosx dx=sinx
sin2x dx=x214sin(2x)
cos2x dx=x2+14sin(2x)
sin3x dx=13cos3xcosx
cos3x dx=sinx13sin3x
dxsinx=lntanx2
dxcosx=lntan(x2+π4)
dxsin2x=cotx
dxcos2x=tanx
dxsin3x=cosx2sin2x+12lntanx2
dxcos3x=sinx2cos2x+12lntan(x2+π2)
sinxcosxdx=14cos(2x)
sin2xcosxdx=13sin3x
sinxcos2xdx=13cos3x
sin2xcos2xdx=x8132sin(4x)
tanx dx=ln|cosx|
sinxcos2xdx=1cosx
sin2xcosxdx=lntan(x2+π4)sinx
tan2x dx=tanxx
cotx dx=ln|sinx|
cosxsin2xdx=1sinx
cos2xsinxdx=lntanx2+cosx
cot2x dx=cotxx
dxsinxcosx=ln|tanx|
dxsin2xcosx=1sinx+lntan(x2+π4)
dxsinxcos2x=1cosx+lntanx2
dxsin2xcos2x=tanxcotx
sin(mx)sin(nx) dx=sin(m+n)x2(m+n)+sin(mn)x2(mn),m2n2
sin(mx)cos(nx) dx=cos(m+n)x2(m+n)cos(mn)x2(mn),m2n2
cos(mx)cos(nx) dx=sin(m+n)x2(m+n)+sin(mn)x2(mn),m2n2
sinxcosnx dx=sinn+1xn+1
sinnxcosx dx=sinn+1xn+1
arcsinx dx=xarcsinx+1x2
arccosx dx=xarccosx1x2
arctanx dx=xarctanx12ln(1+x2)
arccotx dx=xarccotx+12ln(1+x2)

 

No comments:

Post a Comment