Art of Learning Mathematics
Saturday, 2 May 2015
Integrals of Trigonometric Functions
∫
sin
x
d
x
=
−
cos
x
∫
cos
x
d
x
=
sin
x
∫
sin
2
x
d
x
=
x
2
−
1
4
sin
(
2
x
)
∫
cos
2
x
d
x
=
x
2
+
1
4
sin
(
2
x
)
∫
sin
3
x
d
x
=
1
3
cos
3
x
−
cos
x
∫
cos
3
x
d
x
=
sin
x
−
1
3
sin
3
x
∫
d
x
sin
x
=
ln
∣
∣
tan
x
2
∣
∣
∫
d
x
cos
x
=
ln
∣
∣
∣
tan
(
x
2
+
π
4
)
∣
∣
∣
∫
d
x
sin
2
x
=
−
cot
x
∫
d
x
cos
2
x
=
tan
x
∫
d
x
sin
3
x
=
−
cos
x
2
⋅
sin
2
x
+
1
2
ln
∣
∣
tan
x
2
∣
∣
∫
d
x
cos
3
x
=
sin
x
2
⋅
cos
2
x
+
1
2
ln
∣
∣
∣
tan
(
x
2
+
π
2
)
∣
∣
∣
∫
sin
x
⋅
cos
x
d
x
=
−
1
4
cos
(
2
x
)
∫
sin
2
x
⋅
cos
x
d
x
=
1
3
sin
3
x
∫
sin
x
⋅
cos
2
x
d
x
=
−
1
3
cos
3
x
∫
sin
2
x
⋅
cos
2
x
d
x
=
x
8
−
1
32
sin
(
4
x
)
∫
tan
x
d
x
=
−
ln
|
cos
x
|
∫
sin
x
cos
2
x
d
x
=
1
cos
x
∫
sin
2
x
cos
x
d
x
=
ln
∣
∣
∣
tan
(
x
2
+
π
4
)
∣
∣
∣
−
sin
x
∫
tan
2
x
d
x
=
tan
x
−
x
∫
cot
x
d
x
=
ln
|
sin
x
|
∫
cos
x
sin
2
x
d
x
=
−
1
sin
x
∫
cos
2
x
sin
x
d
x
=
ln
∣
∣
tan
x
2
∣
∣
+
cos
x
∫
cot
2
x
d
x
=
−
cot
x
−
x
∫
d
x
sin
x
⋅
cos
x
=
ln
|
tan
x
|
∫
d
x
sin
2
x
⋅
cos
x
=
−
1
sin
x
+
ln
∣
∣
∣
tan
(
x
2
+
π
4
)
∣
∣
∣
∫
d
x
sin
x
⋅
cos
2
x
=
1
cos
x
+
ln
∣
∣
tan
x
2
∣
∣
∫
d
x
sin
2
x
⋅
cos
2
x
=
tan
x
−
cot
x
∫
sin
(
m
x
)
⋅
sin
(
n
x
)
d
x
=
−
sin
(
m
+
n
)
x
2
(
m
+
n
)
+
sin
(
m
−
n
)
x
2
(
m
−
n
)
,
m
2
≠
n
2
∫
sin
(
m
x
)
⋅
cos
(
n
x
)
d
x
=
−
cos
(
m
+
n
)
x
2
(
m
+
n
)
−
cos
(
m
−
n
)
x
2
(
m
−
n
)
,
m
2
≠
n
2
∫
cos
(
m
x
)
⋅
cos
(
n
x
)
d
x
=
sin
(
m
+
n
)
x
2
(
m
+
n
)
+
sin
(
m
−
n
)
x
2
(
m
−
n
)
,
m
2
≠
n
2
∫
sin
x
⋅
cos
n
x
d
x
=
sin
n
+
1
x
n
+
1
∫
sin
n
x
⋅
cos
x
d
x
=
sin
n
+
1
x
n
+
1
∫
arcsin
x
d
x
=
x
⋅
arcsin
x
+
1
−
x
2
−
−
−
−
−
√
∫
arccos
x
d
x
=
x
⋅
arccos
x
−
1
−
x
2
−
−
−
−
−
√
∫
arctan
x
d
x
=
x
⋅
arctan
x
−
1
2
ln
(
1
+
x
2
)
∫
a
r
c
c
o
t
x
d
x
=
x
⋅
a
r
c
c
o
t
x
+
1
2
ln
(
1
+
x
2
)
No comments:
Post a Comment
Newer Post
Older Post
Home
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment