Art of Learning Mathematics
Saturday, 2 May 2015
Integrals of Logarithmic Functions
∫
ln
(
c
x
)
d
x
=
x
ln
(
c
x
)
−
x
∫
ln
(
a
x
+
b
)
d
x
=
x
ln
(
a
x
+
b
)
−
x
+
b
a
ln
(
a
x
+
b
)
∫
(
ln
x
)
2
d
x
=
x
(
ln
x
)
2
−
2
x
ln
x
+
2
x
∫
(
ln
(
c
x
)
)
n
d
x
=
x
(
ln
x
)
n
−
n
⋅
∫
(
ln
(
c
x
)
)
n
−
1
d
x
∫
d
x
ln
x
=
ln
|
ln
x
|
+
ln
x
+
∑
n
=
2
∞
(
ln
x
)
i
i
⋅
i
!
∫
d
x
(
ln
x
)
n
=
−
x
(
n
−
1
)
(
ln
x
)
n
−
1
+
1
n
−
1
∫
d
x
(
ln
x
)
n
−
1
∫
x
m
⋅
ln
x
d
x
=
x
m
+
1
(
ln
x
m
+
1
−
1
(
m
+
1
)
2
)
(
fot
m
≠
1
)
∫
x
m
⋅
(
ln
x
)
n
d
x
=
x
m
+
1
(
ln
x
)
n
m
+
1
−
n
m
+
1
∫
x
m
(
ln
x
)
n
−
1
d
x
(
for
m
≠
1
)
∫
(
ln
x
)
n
x
d
x
=
(
ln
x
)
n
+
1
n
+
1
,
(
for
n
≠
1
)
∫
ln
x
n
x
d
x
=
(
ln
x
n
)
2
2
n
,
(
for
n
≠
0
)
∫
ln
x
x
m
d
x
=
−
ln
x
(
m
−
1
)
x
m
−
1
−
1
(
m
−
1
)
2
x
m
−
1
,
(
fot
m
≠
1
)
∫
(
ln
x
)
n
x
m
d
x
=
−
(
ln
x
)
n
(
m
−
1
)
x
m
−
1
+
n
m
−
1
∫
(
ln
x
)
n
−
1
x
m
d
x
,
(
fot
m
≠
1
)
∫
d
x
x
⋅
ln
x
=
ln
|
ln
x
|
∫
d
x
x
n
⋅
ln
x
=
ln
|
ln
x
|
+
∑
i
=
1
∞
(
−
1
)
i
(
n
−
1
)
i
(
ln
x
)
i
i
⋅
i
!
∫
d
x
x
(
ln
x
)
n
=
−
1
(
n
−
1
)
(
ln
x
)
n
−
1
,
(
for
n
≠
1
)
∫
ln
(
x
2
+
a
2
)
d
x
=
x
ln
(
x
2
+
a
2
)
−
2
x
+
2
a
arctan
x
a
∫
sin
(
ln
x
)
d
x
=
x
2
(
sin
(
ln
x
)
−
cos
(
ln
x
)
)
∫
cos
(
ln
x
)
d
x
=
x
2
(
sin
(
ln
x
)
+
cos
(
ln
x
)
)
No comments:
Post a Comment
Newer Post
Older Post
Home
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment