Saturday, 2 May 2015

Integrals of Logarithmic Functions

ln(cx)dx=xln(cx)x
ln(ax+b)dx=xln(ax+b)x+baln(ax+b)
(lnx)2dx=x(lnx)22xlnx+2x
(ln(cx))ndx=x(lnx)nn(ln(cx))n1dx
dxlnx=ln|lnx|+lnx+n=2(lnx)iii!
dx(lnx)n=x(n1)(lnx)n1+1n1dx(lnx)n1
xmlnxdx=xm+1(lnxm+11(m+1)2)(fot m1)
xm(lnx)ndx=xm+1(lnx)nm+1nm+1xm(lnx)n1dx(for m1)
(lnx)nxdx=(lnx)n+1n+1,(for n1)
lnxnxdx=(lnxn)22n,(for n0)
lnxxmdx=lnx(m1)xm11(m1)2xm1,(fot m1)
(lnx)nxmdx=(lnx)n(m1)xm1+nm1(lnx)n1xmdx,(fot m1)
dxxlnx=ln|lnx|
dxxnlnx=ln|lnx|+i=1(1)i(n1)i(lnx)iii!
dxx(lnx)n=1(n1)(lnx)n1,(for n1)
ln(x2+a2)dx=xln(x2+a2)2x+2aarctanxa
sin(lnx)dx=x2(sin(lnx)cos(lnx))
cos(lnx)dx=x2(sin(lnx)+cos(lnx))

 

No comments:

Post a Comment