Saturday, 2 May 2015

Integrals of Exponential Functions 

eaxdx=1ceax
acxdx=1clnaacx,(for a>0,a1)
xecx=ecxc2(cx1)
x2ecx=ecx(x2c2xc2+2c3)
xnecxdx=1cxnecxncxn1ecxdx
ecxxdx=ln|x|+i=1(cx)iii!
ecxxn=1n1(ecxxn1+cecxxn1dx)
ecxlnxdx=1cecxln|x|+Ei(cx)
ecxsin(bx)dx=ecxc2+b2(csin(bx)bcos(bx))
ecxcos(bx)dx=ecxc2+b2(csin(bx)+bcos(bx))
ecxsinnxdx=ecxsinn1xc2+n2(csinxncos(bx))+n(n1)c2+n2ecxsinn2dx
ecxcosnxdx=ecxcosn1xc2+n2(csinx+ncos(bx))+n(n1)c2+n2ecxcosn2dx

 

No comments:

Post a Comment